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A Combined Method for Dielectric Waveguides
Using the Finite-Element Technique and

Surface Integral Equations Method
the

CHING-CHUAN SU

Abstract —A combined method employing a finite-element technique in

the H. – HY formulation and the surface integral equations method is

proposed to treat the propagation characteristics of irdromogeneous wave-

guides with single or multiple claddings. The significant features of this

combined method are that it does not suffer from any kind of spurious

modes, which have been troublesome in applying the finite-element tech-

nique to wavegnides and it is afso capable of treating the cutoff frequencies

of arbitrarily shaped, iohomogeneous dielectric waveguides with a single

cladding, which is perhaps original. Furthermore, the proposed method is

convenient in treatiug propagation constants close to cutoff and in han-

dling coupled wavegoides. Numericaf results of inhomogeneous elliptical

waveguides, diffusion waveguides, and the corresponding directional cou-

plers are presented, including the cutoff frequencies of the elliptical

wavegnides.

I. INTRODUCTION

B Y VIRTUE OF its flexibility in application, the

finite-element technique has become an important

tool in the numerical analysis of open or closed wave-

guides. However, a tedious problem prevailing in most

applications of this technique is the occurrence of some’

nonphysical, or spurious modes, as noted in [1]–[6] and

perhaps in [7] and [8]. In a previous investigation [9] for

rotationally symmetric waveguides, where the E=– Hz for-

mulation is employed, an origin of spurious modes has

been found and the locations of such modes have been

predicted quantitatively. Although the case of inhomoge-

neous waveguides with arbitrary cross sections is much

more complicated, the spurious modes occurring in the

finite-element (or finite-difference) methods in the E=- H=
formulation is believed to be due to the same origin: the

denominator [k~c(x, y) – P 2] for expressing the transverse

fields in terms of E, and HZ, where kO denotes the

free-space propagation constant, C(X, y) is a relative per-

mittivity distribution, and ~ is the propagation constant in

the axial (z) direction. When ~ 2/lc~ becomes equal to
some particular value of the permittivity distribution within

a finite-element subregion, such a denominator will make

some rows (corresponding to the nodes of that subregion)

of matrix elements proportional to each other and thereby

render the resultant matrix equation ill-conditioned.

Accordingly, the number of such spurious modes will
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increase when the number of subregions increases or the

permittivity distribution becomes complicated (away from

a uniform distribution), which agrees with the observation

in [4]. In view of this, a finite-element technique for-

mulated in other fields (rather than the axial fields E= and

H=) should be suitable. Among them, the Hx – Hy [10], the

Ex – Ey [11],and the full H [5], [6] formulations have been

proposed (although motivated by other purposes). Beside

this kind of spurious modes, Konrad also discussed [12]

another class of spurious modes that are caused by inade-

quate boundary conditions. The spurious modes in [5] and

[6] where the full H formulation is employed seem to be a

result of the approximate boundary conditions.

Beside the spurious modes, one major problem in the

finite-element analysis of open waveguides is how to treat

the infinite transverse cross section. One of the approaches

is to impose an artificial zero boundary condition on the

associated fields [2], [3], [7], [13]. This approach works

when the actual fields decay considerably at the zero

boundary. To obtain satisfactory results, such a boundary

should be extended far away from the core region, which

means that the computation effort will be increased. The

second approach is to employ some kind of “infinite

elements” which extend to infinity [5], ,[8]. Since the field

behavior of such elements cannot be determined a priori,

the fields therein should be modeled by some trial-and-

error decay parameters to obtain reasonable results. The

above two approaches involve difficulty in calculating the

propagation constants near cutoff, since the fields penetrate

deeply into the outer cladding medium. For the cases of

inhomogeneous waveguides cladded by a single homoge-

neous region, a more rigorous approach is to incorporate

some surface integrals as boundary conditions. Such surface

integrals can be obtained from a finite-element formula-
tion, as shown in [4] and [10]. The approach proposed by

Oyamada and Okoshi [4] to treat the surface integrals

together with the finite-element is to extend the core-clad-

ding interface, within which the finite-element manipula-

tion is to be applied, into a circular one. The fields on such

a circular boundary are expanded in circular harmonics

(the products of the modified Bessel functions and trigono-

metric functions) with coefficients to be determined. Such

an approach is inefficient for an elongated waveguide and

for coupled waveguides, since a large circular boundary
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should be used to enclose the core region(s). Another

approach to treat the combined formulation is proposed

by Williams and Cambrell [10], where the surface integrals

are treated by the moment method.1 This approach, in

some respects, is similar to the one employed in this

investigation. However, with aid from the numerical proce-

dure in the surface integral equations method [14], [15], we

have generalized such a combined method so that it can

handle the coupled waveguides efficiently, and that it can

treat waveguides cladded by multiple homogeneous media

(such as the diffusion waveguide). Furthermore, using

Green’s function at cutoff proposed in [14], the present

method enables calculation of the cutoff frequencies of

arbitrarily-shaped inhomogeneous waveguides with a single

cladding, which to our knowledge is original.

In this investigation, the finite-element technique is for-

mulated in transverse fields and is combined with the

surface integral equations method. The main features of

such a combined method are that it does not suffer from

any kind of spurious mode, and that it is capable of

treating a variety of dielectric waveguides, including cou-

pled waveguides. The numerical procedure for such a

combined method will be discussed in Sections II and IV.

It should be stressed that even in treating coupled wave-

guides manipulation of the time-consuming finite-element

is confined within the inhomogeneous region(s).

II. SURFACE INTEGRAL EQUATIONS METHOD

As shown in [14], for a homogeneous dielectric region

with boundary C, any field component F (in rectangular

coordinates) and its inward normal derivative dF/dn at

the boundary can be related through a surface integral

equation

where G denotes Green’s function for a transverse plane of

the associated region, A(7) is the interior angle of the

boundary at 7, and ~ denotes the Cauchy principal integral

with the singularity at 7’=? removed. When the above

integrals are discretized into matrix forms, one can express

dF/dn explicitly in terms of F (k matrix form) after some

matrix manipulations. When one employs such a method

or other techniques to obtain explicit expressions for HX

and HY for all the regions involved, one can determine

propagation characteristics by enforcing the continuity

requirement of E, and HZ at all the boundaries encoun-

tered. Here, E= and Hz can be expressed in terms of HX

and HY and their normal derivatives as a consequence of

Maxwell’s equations (for details, see [14]). Cutoff frequen-

cies of waveguides with a single cladding can be de-

1We would like to point out that due to an erroneous application of the
continuity of normaf derivatives of associated fields at a permittivity
discontinuity, the results in [10] happen to be scalar solutions, which is
just a consequence pertaining to homogeneous waveguides.
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termined if one uses Green’s function at cutoff for the

cladding region as described in [14]. For unbounded wave-

guides (such as the diffusion waveguide), the correspond-

ing infinite integrals in (1) are truncated, which has been

justified in [15].

For a guiding structure containing some inhomogeneous

regions, the corresponding explicit relations cannot be

determined from (1) and must be treated otherwise. A

promising method for such inhomogeneous regions is the

finite-element technique, which is described in Sections III

and IV. After the explicit relations for such regions are

solved, the other procedures for obtaining the propagation

characteristics are the same as just described.

It is noted that by using such a procedure, the propa-

gation problem in this investigation is treated through an

extraordinary eigenvalue problem, where the eigenvalues

are determined in a searching procedure. The propagation

problem given in [10] is formulated into an ordinary (but

generalized) eigenvalue problem, where some iterative

methods may be used. However, such a procedure cannot

be applied to those waveguides with dispersive material

and to those waveguides with multiple claddings.

III. FINITE-ELEMENT FORMULATION

From Maxwell’s equations, the magnetic fields of a

guided mode satisfy the following source-free equation

everywhere:

k:fi-v X[:-lV x=] =0. (2)

On forming a dot product of the left-hand side of (~ with

some arbitrary vector function ~ (independent of H) and

then integrating the scalar product over the entire space,

one obtains

In ~riting (~, the vector identity v. (XX ~)= (V x ~). ~

– A. (V x B) is used and the associated surface integral at

the infinity is deleted since it plays no role in the actual

treatment and indeed vanishes ‘there. Equation (3) can be

used to treat waveguides of general anisotropy. In this

investigation we consider isotropic waveguides for which

(2) reduces to

VXH
k:~– V X—=0.

C(x, y)
(4)

Employiqg the vector identity Q v X(x@= A(v X ~) +

(vA) X B and the relation v. H = O, (4) reduces to

k:c(x, y)~+v2~–(v X~)X
V6(X, y)

= o (5)
6(X, y)

from which one obtains, for an arbitrary function ~

[ 1}- (V X~)X: .~ d7=0. (6)
. .,
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For the propagation problem, all the fields are assumed to

have fixed variation in the axial direction as exp ( – j~z ).

Then, if ~ is chosen to be 2H~(x, y) eJ~z and

jHJ(x, y)e @ (again, H: and H; are independent of Hx
and HY; and the use of exp ( j~z ) is to prevent (6) being

identically zero and to make (6) independent of the vari-

able z), one arrives at the following forms, respectively:

and

In writing (7), integration by parts has been used for those

terms involving a second differentiation. From (7), it is

noted that Hz has been uncoupled from Hx and Hy. On

making a variation of (7a) and (7b) with respect to H: and

H;, respectively, one obtains the previous governing equa-

tions in HX and Hy implied in (5).

Similar formulas can be given for Ex and Ey; however,

it is found on examining the results for a rotationally

symmetric fiber for which rather accurate methods are

available [16] that the EX – Ey formulation yields results of

less accuracy.

In a case where ve is small enough to be neglected, (7a)

and (7b) become identical and Hx and H= are uncoupled

automatically. Such a situation is known as the scalar

formulation. Because of the identity and the uncoupling

the computation effort and the core storage of the scalar

form can be reduced accordingly.

IV. NUMERICAL PROCEDURE FOR FINITE-ELEMENT

In the finite-element treatment, the region of concern is

divided into a number of subregions (or elements) within

which the associated fields ( Hx, Hy, H:, and H;) are

expanded in some local basis functions with the expansion

coefficients being the field nodal values. Thereafter, on

making a variation of (7a) and (7b) with respect to H; and
H; at all such nodes, one obtains 2N (N being the

number of entire nodes) simultaneous equations in terms

of HX and Hy. Those equations obtained from taking the

variation at the outermost nodes (the nodes on Cl in Fig.

1) are incomplete and, hence, inadequate. However, from

the remaining 2(N – M) adequate equations (M being the

number of nodes on Cl), one can solve the relations (a

matrix form) between the fields of the outermost nodes

and of the next-to-outermost nodes (the nodes on Cz in

Fig. 1). Once such relations are solved, the explicit rela-

tions between associated fields (Hx and H,) and their

normal derivatives at the boundary of the inhomogeneous

region can be deduced in a simple manner.

/c’,c2
z“ /

I/il \/+-- +#-”+-”k- “-t-v’” I i I

I I 1 U/ v/ Vfl
“ I

Fig. 1. Configuration and ordering of the elements in a frontat solution.
The dashed arrows indicate the ordering of elements in the

assembling/etimination process.

In employing the finite-element technique, one obtains a

sparse matrix. The conventional Gauss elimination proce-

dure results in a great waste of core storage. This problem

is avoided by employing the frontal algorithm [17], [18].

The concept of the frontal algorithm is that the Gauss

eliminations with respect to the fields of some nodes are

made in the process of matrix assembling as soon as the

assembling for that node is completed. Thus, those rows

pertaining to that node can be deleted. If one would like to

construct the entire field patterns, such matrix elements

can be stored in a secondary storage device for later use in

back-substitution. Thereby, the matrix size is proportional

to the square of the number of nodes on the boundary

rather than proportional to the square of the number of

entire nodes.

With the aim of obtaining the relations between the

fields of the outermost and of the next-to-outermost nodes,

the assembling/elimination process starts from the inner-

most elements and then moves outward gradually, as indi-

cated in Fig. 1. After the last element is treated, a matrix

equation with a size of 2 M X 4M (for convenience, the

nodes on Cz is made normal to Cl and the number of

nodes on Cz is made equal to M, as depicted in Fig. 1) in

the fields of the outermost and the next-to-outermost

nodes emerges, from which the explicit relations for the

inhomogeneous region can be deduced and the propa-

gation characteristics can be obtained (see Section II).

It is noted that for a given region and elements, the

effective bandwidth in the present elimination process is

larger than that in the method employing the artificial zero

boundary or infinite elements. However, the actual region

to be manipulated by the finite-element in the combined

method is much smaller than those in the other two

methods, especially in treating the propagation constants

close to cutoff or in handling coupled waveguides.
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V. FWSULTS

In this investigation, we use triangular ‘elements and

expand all the associated fields in linear basis functions. In

treating isolated waveguides, no symmetry property was

used. In treating two identical coupled waveguides, sym-

metry about the plane bisecting the two waveguides was

utilized such that the inhomogeneous region to be

manipulated by the finite-element is the same as in the

case of the corresponding isolated waveguide.

To examine the accuracy of the proposed method, we

compare the results of a rotational symmetric waveguide

with the parabolic profile (a = b in (8)), as shown in Fig.

2. For such a special case, highly accurate methods are

available, such as in [16]. From Fig. 2, it is seen that the

agreement between the results is quite good. At a high

normalized propagation constant B (defined below), the

fields concentrate in the core region, and, accordingly, the

variations of the fields become stronger. This fact accounts

for the accuracy of the calculated results being worse for a

high B value. Similarly, it can be expected that the accu-

racy is worse for higher modes since the field variations of

such modes become larger.

In the following, we consider coupled and uncoupled

elliptical and diffusion waveguides. The results are pre-

sented in normalized frequency V$ and normalized propa-

gation constant B, where

The notation of H;n (H&) designates that mode for

which the dominant magnetic field is directed in the y(x)

direction and the dominant field pattern has m and n

peaks in the’ x and y directions, respectively.

A. Elliptical Waveguide

The elliptical waveguide considered has a parabolic pro-

file, i.e.,

X2 2() X2 2
4x, y)=cg-(6g-~2)---J+;~ for~+~<l

=E2, elsewhere. (8)

Dispersion curves of such a waveguide with a/b= 2 and a

permittivity ratio c, ( = Cg/C2) of 2.25 are shown in Fig. 3.

The corresponding scalar solutions (c, -+ 1) are shown in

Fig. 4. Comparing Figs. 3 and 4, it is seen that the curves

of the H:n modes deviate more than those of the H;n

modes as the permittivity ratio c, is increased. Such a

situation is also found in homogeneous rectangular wave-

guide [14], [19]. Cutoff frequencies of some lower modes

are presented in Table I. It is seen that there are two

fundamental modes Hf’ and H:l for such a guiding struc-

ture. Dispersion curves of the corresponding coupled

waveguides (directional coupler) are illustrated in Figs. 5

08 1 1
06 -

B HE,,

0.4 -

02 -

0
1’ 3 5 7

V = kOa(E~-EJ”2

Fig. 2. Dispersion curves of a circular waveguide with the parabolic
rmofile and with c. /c, = 2.25. The solid line is taken from [161. which
‘may be deemed m’ ex~ct; the dots correspond to the proposkd ‘method
with the number of nodes Nn =121 and the number of elements
N== 210.

:
I
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06 -

B —, H;.

04 - ---- H:.
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0
0 1 2 3

v~
.

Fig. 3. Vectoriaf dispersion curves of the elliptical waveguide. Nn = 121
and N,= 210.
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02 -

0
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Fig. 4. Scalar dispersion curves of the elliptical waveguide.

and 6, where the separation s is the distance between the

two centers of the ellipses minus the length of the major

axes. Similar to homogeneous coupled waveguides [14],

each mode of the corresponding isolated waveguide is split

into two modes. For such split modes, the pattern of Hy is

either even (the H;n, or the H;ne mode) or odd (the H&O

or the H:no mode) with respect to the plane of symmetry.

Comparing Figs, 5 and 6, it is seen that, using normalized

quantities, the magnitudes of splitting do not depend much

on the permittivity ratio. From Figs. 5 and 6, it is evident

that the splitting is stronger for a smaller propagation
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TABLE I
NORMALIZED CUTOFF FREQUENCIES OF THE ELLIPTICAL

WAVEGUIDE

q- 1

Mode —
~;l 0.00

~x
11

0.00

~Y
21

1.403

“x
21 1.403

~;l 2.o44

~x
31 2.044

~Y
12

1.997

Hf2 1.997

~r=2.25

0.00

0.00

1.388

1.524

2.013

2.129

2.045

2.013

coupled waveqndes , s=b
c=- 1 f =2.25

even odd W,llr odd
—— —.

0.00 0.704 0.00 0.766

0.704 0.00 0.831 0.00

1.362 1.477 1.340 1.471

1.477 1.362 1.596 1.483

2.037 2.192 2.005 2.188

2.192 2.037 2.286 2.125

1.967 2.028 2.016 “2.075

2.028 1.967 2.053 1.971

1

0

0

B

o

0

0

6 - — H;; e

H;I,,o-—— H;v’o

4 -

2

0 1 2 3

v~

Fig. 5. Vectoriaf dispersion curves of two identical, coupled elliptical
wavegnides.

0.8

I

06 -

B
H;l .

0.4 - H;,,

02

0
0 1 2 3

Fig. 6. Scalar dispersion curves of two identical, coupled elliptical
wavegnides.

constant B or for lower modes, which indicates that under

such situations the fields penetrate farther away from the

core regions. When the coupled waveguides are operated at

a high propagation constant, no substantial coupling can

be expected.

Cutoff frequencies of coupled waveguides are also pre-

sented in Table I. It is found that the cutoff frequency of

one split mode (from either fundamental mode) shifts from

zero, and the other split mode is never cutoff. Again, the

olL—____i
1 3 5

5/b

Fig. 7. Splitting of the fundamental modes of the elliptical waveguide
a8 a function of separation s.

B

0.6, 1
I Y I

o 1 2 3 .4

v~

Fig. 8. Dispersion curves of the diffusion waveguide with a/b= 2,
D/b =1, eglcl = 2.25, and Cz\cl = 2.15. N.= 136 and N,= 232.

02 -
v~=2

.\
\

B

H~lY/

./

01 - -lsl-

n#fTizr

1 3 5

‘lb

Fig. 9. Splitting of the fundamental modes of the diffusion waveguide
with a/b =1,D/b =1,c /cl= 2.25, and c2\cl = 2.15 as a function of

Jseparation s. iv. =82 an N,= 136.

entire guiding structure possesses two fundamental modes

H/l. and H<l.. The separation s of coupled waveguides
has a strong effect on the coupling coefficient as shown in

Fig. 7. Note that, for given values of B and V., the explicit

relations (between the fields and their normal derivatives)

for the inhomogeneous regions are identical, regardless of

how far the coupled waveguides are separated. Thereby,

considerable computation effort can be saved if one treats

several couplers with different separations s simulta-

neously, as in constructing Fig. 7.
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02

B
--—_

01

I I
1 3 5

04

B 03

02

‘/b.

(a)

V5=2

,
I 3 5

S/b

(b)

Fig. 10. Splitting of the fundarnentaf modes of the diffusion waveguide
with a/b =1, D/b =1, cg/cl = 2.25/2.15, and c2/cl = 1 as a function
of separation s. (a) ~ =1.35. (b) ~ = 2.

B. Diffusion Waueguide

The diffusion waveguides

profile, i.e.,

considered have a Gaussian

f(x, y)=cz+(cg– t2)exp[–(y/D)2],

forlxl<a, O>y>–2b

=(1, fory>O

=62, elsewhere (9)

which models the permittivit y distribution of a homoge-

neous substrate (with relative permittivity cz) processed by

a masked one-dimensional diffusion. Dispersion curves of

the first six modes of such a guiding structure are shown in

Fig. 8. It is seen that the curves of the H;. and the H:n

modes come together as in the channel waveguide dis-

cussed in [15], for which the inhomogeneous region is

replaced by a homogeneous one. However, the discrepancy

between such two modes is larger for the diffusion wave-

guide. This phenomenon is due partly to the fact that the

permittivity of the inhomogeneous region is made large at

the substrate surface, where, as a consequence, the fields

become stronger than in the corresponding channel wave-

guide (D ~ co). Since the permittivity discontinuity at the

surface is large and the fields are not negligible there, a

larger discrepancy between the H#n and the H~~ modes is

expected.
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Similar splitting due to mutual coupling also exists in

the coupled diffusion waveguides as shown in Figs. 9 and

10. Comparing Figs. 9 and 10(a), it is seen that, for the

same range of B and the same separation s, the coupling

coefficient (the magnitude of splitting in B) in Fig. 9 is

much weaker than the corresponding coupler with an

increased Cl (Fig. 10(a)). This fact is accounted for by

noting that the permittivity of the air ((1) in Fig. 9 is much

smaller than that of the substrate ((z). Consequently, the
fields are more confined in the core regions, which in turn

results in a smaller coupling coefficient. From such results,

it seems plausible to enhance the coupling coefficients by

coating the coupled diffusion waveguides with a dielectric

layer of a higher permittivity. However, from Fig. 10(b), it

is noted that, for a given frequency, such an enhancement

will be compensated since the coupler is also driven to a

higher B when c1 is increased.

VI. CONCLUSIONS

A combined method employing both the finite-element

technique and the surface integral equations method is

proposed, and has been used to analyze propagation char-

acteristics of coupled and uncoupled elliptical and diffu-

sion waveguides. Cutoff frequencies of isolated and cou-

pled elliptical waveguides are also presented. Since this

combined method does not suffer from the appearance of

spurious modes, it is convenient in the analysis of new

guiding structures.
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