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A Combined Method for Dielectric Waveguides
Using the Finite-Element Technique and the
Surface Integral Equations Method

CHING-CHUAN SU

Abstract — A combined method employing a finite-element technique in
the H,~-H, formulation and the surface integral equations method is
proposed to treat the propagation characteristics of inhomogeneous wave-
guides with single or multiple claddings. The significant features of this
combined method are that it does not suffer from any kind of spurious
modes, which have been troublesome in applying the finite-element tech-
nique to waveguides and it is also capable of treating the cutoff frequencies
of arbitrarily shaped, inhomogeneous dielectric waveguides with a single
cladding, which is perhaps original. Furthermore, the proposed method is
convenient in treating propagation constants close to cutoff and in han-
dling coupled waveguides. Numerical results of inhomogeneous elliptical
waveguides, diffusion waveguides, and the corresponding directional cou-
plers are presented, including the cutoff frequencies of the elliptical

waveguides.
Y VIRTUE OF its flexibility in application, the
finite-element technique has become an important
tool in the numerical analysis of open or closed wave-
guides. However, a tedious problem prevailing in most

I. INTRODUCTION

applications of this technique is the occurrence of some’

nonphysical, or spurious modes, as noted in [1]-[6] and
perhaps in [7] and [8]. In a previous investigation [9] for
rotationally symmetric waveguides, where the E,~ H_ for-
mulation is employed, an origin of spurious modes has
been found and the locations of such modes have been
predicted quantitatively. Although the case of inhomoge-
neous waveguides with arbitrary cross sections is much
more complicated, the spurious modes occurring in the
finite-element (or finite-difference) methods in the E,— H,
formulation is believed to be due to the same origin: the
denominator [k3e(x, y)— B2] for expressing the transverse
fields in terms of E, and H,, where k, denotes the
free-space propagation constant, e(x, y) is a relative per-
mittivity distribution, and 8 is the propagation constant in
the axial (z) direction. When B2/k? becomes equal to
some particular value of the permittivity distribution within
a finite-element subregion, such a denominator will make
some rows (corresponding to the nodes of that subregion)
of matrix elements proportional to each other and thereby
render the resultant matrix equation ill-conditioned.
Accordingly, the number of such spurious modes will
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increase when the number of subregions increases or the
permittivity distribution becomes complicated (away from
a uniform distribution), which agrees with the observation
in [4]. In view of this, a finite-element technique for-
mulated in other fields (rather than the axial fields E, and
H,) should be suitable. Among them, the H,—H, [10], the
E.~E, [11], and the full H [5], [6] formulations have been
proposed (although motivated by other purposes). Beside
this kind of spurious modes, Konrad also discussed [12]
another class of spurious modes that are caused by inade-
quate boundary conditions. The spurious modes in [5] and
[6] where the full H formulation is employed seem to be a
result of the approximate boundary conditions.

Beside the spurious modes, one major problem in the
finite-element analysis of open waveguides is how to treat
the infinite transverse cross section. One of the approaches
is to impose an artificial zero boundary condition on the
associated fields [2], [3], [7], [13]. This approach works
when the actual fields decay considerably at the zero
boundary. To obtain satisfactory results, such a boundary
should be extended far away from the core region, which
means that the computation effort will be increased. The
second approach is to employ some kind of “infinite
elements” which extend to infinity [5], [8]. Since the field
behavior of such elements cannot be determined a priori,
the fields therein should be modeled by some trial-and-
error decay parameters to obtain reasonable results. The
above two approaches involve difficulty in calculating the
propagation constants near cutoff, since the fields penetrate
deeply into the outer cladding medium. For the cases of
inhomogeneous waveguides cladded by a single homoge-
neous region, a more rigorous approach is to incorporate
some surface integrals as boundary conditions. Such surface
integrals can be obtained from a finite-element formula-
tion, as shown in [4] and [10]. The approach proposed by
Oyamada and Okoshi [4] to treat the surface integrals
together with the finite-element is to extend the core-clad-
ding interface, within which the finite-element manipula-
tion is to be applied, into a circular one. The fields on such
a circular boundary are expanded in circular harmonics
(the products of the modified Bessel functions and trigono-
metric functions) with coefficients to be determined. Such
an approach is inefficient for an elongated waveguide and
for coupled waveguides, since a large circular boundary
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should be used to enclose the core region(s). Another
approach to treat the combined formulation is proposed
by Williams and Cambrell [10], where the surface integrals
are treated by the moment method.! This approach, in
some respects, is similar to the one employed in this
investigation. However, with aid from the numerical proce-
dure in the surface integral equations method [14], [15], we
have generalized such a combined method so that it can
handle the coupled waveguides efficiently, and that it can
treat waveguides cladded by multiple homogeneous media
(such as the diffusion waveguide). Furthermore, using
Green’s function at cutoff proposed in [14], the present
method enables calculation of the cutoff frequencies of
arbitrarily-shaped inhomogeneous waveguides with a single
cladding, which to our knowledge is original.

In this investigation, the finite-element technique is for-
mulated in transverse fields and is combined with the
surface integral equations method. The main features of
such a combined method are that it does not suffer from
any kind of spurious mode, and that it is capable of
treating a variety of dielectric waveguides, including cou-
pled waveguides. The numerical procedure for such a
combined method will be discussed in Sections II and IV.
It should be stressed that even in treating coupled wave-
guides manipulation of the time-consuming finite-element
is confined within the inhomogeneous region(s).

II. SURFACE INTEGRAL EQUATIONS METHOD

As shown in [14], for a homogeneous dielectric region
with boundary C, any field component F (in rectangular
coordinates) and its inward normal derivative dF/dn at
the boundary can be related through a surface integral
equation

ar(7)

—9SCG(f, 7) (1)

where G denotes Green’s function for a transverse plane of
the associated region, A(7) is the interior angle of the
boundary at 7, and f denotes the Cauchy principal integral
with the singularity at 7/ =F removed. When the above
integrals are discretized into matrix forms, one can express
dF/dn explicitly in terms of F (in matrix form) after some
matrix manipulations. When one employs such a method
or other techniques to obtain explicit expressions for I
and H, for all the regions involved, one can determme
propagat1on characteristics by enforcing the continuity
requirement of E, and H, at all the boundaries encoun-
tered. Here, E, and H, can be expressed in terms of H,
and H, and their normal derivatives as a consequence of
Maxwell’s equations (for details, see [14]). Cutoff frequen-
cies of waveguides with a single cladding can be de-

1We would like to point out that due to an erroneous application of the
continuity of normal derivatives of associated fields at a permittivity
discontinuity, the results in [10] happen to be scalar solutions, which is
just a consequence pertaining to homogeneous waveguides.
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termined if one uses Green’s function at cutoff for the
cladding region as described in [14]. For unbounded wave-
guides (such as the diffusion waveguide), the correspond-
ing infinite integrals in (1) are truncated, which has been
justified in [15].

For a guiding structure containing some inhomogeneous
regions, the corresponding explicit relations cannot be
determined from (1) and must be treated otherwise. A
promising method for such inhomogeneous regions is the
finite-element technique, which is described in Sections III
and IV. After the explicit relations for such regions are
solved, the other procedures for obtaining the propagation
characteristics are the same as just described.

It is noted that by using such a procedure, the propa-
gation problem in this investigation is treated through an
extraordinary eigenvalue problem, where the cigenvalues
are determined in a searching procedure. The propagation
problem given in [10] is formulated into an ordinary (but
generalized) eigenvalue problem, where some iterative

.methods may be used. However, such a procedure cannot

be applied to those waveguides with dispersive material
and to those waveguides with multiple claddings.

II1.

From Maxwell’s equations, the magnetic fields of a
guided mode satisfy the following source-free equation
everywhere;

FINITE-ELEMENT FORMULATION

k2H-v X[y xH] =

@)
On forming a dot product of the left-hand side of (2) with
some arbitrary vector function H¢ (independent of H) and
then integrating the scalar product over the entire space,
one obtains

JURRH-Be = [ x H]-v x He) di=0.  (3)
In writing (3), the vector identity v - (AXB)=(v X A)-B
— A-(V X B) is used and the associated surface integral at
the infinity is deleted since it plays no role in the actual
treatment and indeed vanishes ‘there. Equation (3) can be
used to treat waveguides of general anisotropy. In this
investigation we consider isotropic waveguides for which
(2) reduces to

v XH
e(x,y) “

Employing the vector identity of v X (AB) = A(V X B)+
(vA)x B and the relation v+ H = 0, (4) reduces to

ve(x,y)
e(x,y)

from which one obtains, for an arbitrary function H*

k2H—v x

ke(x, y)H+V*H (v x H)X =0 (5)

/ {kgeff-ﬁv (v

_ [(V x @) %]ﬁ} dF=0. (6)
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For the propagation problem, all the fields are assumed to
have fixed variation in the axial direction as exp(— jBz).
Then, if H°¢ is chosen to be XHI(x, y)e’’” and
PH(x, y)e’® (again, H{ and H{ are independent of H,
and H,; and the use of exp(jBz) is to prevent (6) being
identically zero and to make (6) independent of the vari-
able z), one arrives at the following forms, respectively:

L . 0H, 0HS 0H, OHS
f{(koe——,B JHH - dx dx dy dy
+(E—E)ﬁlH0}dxdy=0 (7a)
dx dy |dy e ~
and
f{(kge—W)HyH;— e a;jy aiy
( o8, _ -85) ﬁlHC} dxdy=0. (7b)
dy dx | dx e 7

In writing (7), integration by parts has been used for those
terms involving a second differentiation. From (7), it is
noted that H, has been uncoupled from H, and H,. On
making a variation of (7a) and (7b) with respect to H: and
H?, respectively, one obtains the previous governing equa-
tions in H, and H, implied in (5).

Similar formulas can be given for E, and E,; however,
it is found on examining the results for a rotationally
symmetric fiber for which rather accurate methods are
available [16] that the E, - E, formulation yields results of
less accuracy.

In a case where Ve is small enough to be neglected, (7a)
and (7b) become identical and H, and H, are uncoupled
automatically. Such a situation is known as the scalar
formulation. Because of the identity and the uncoupling
the computation effort and the core storage of the scalar
form can be reduced accordingly.

IV. NUMERICAL PROCEDURE FOR FINITE-ELEMENT

In the finite-element treatment, the region of concern is
divided into a number of subregions (or elements) within
which the associated fields (H,, H,, Hf, and H) are
expanded in some local basis functions with the expansion
coefficients being the field nodal values. Thereafter, on
making a variation of (7a) and (7b) with respect to H¢ and
HJ at all such nodes, one obtains 2N (N being the
number of entire nodes) simultaneous equations in terms
of H, and H,. Those equations obtained from taking the
variation at the outermost nodes (the nodes on C, in Fig.
1) are incomplete and, hence, inadequate. However, from
the remaining 2( N — M) adequate equations (M being the
number of nodes on C;), one can solve the relations (a
matrix form) between the fields of the outermost nodes
and of the next-to-outermost nodes (the nodes on C, in
Fig. 1). Once such relations are solved, the explicit rela-
tions between associated fields (H, and H,) and their
normal derivatives at the boundary of the inhomogeneous
region can be deduced in a simple manner.
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Fig. 1. Configuration and ordering of the elements in a frontal solution.
The dashed arrows indicate the ordering of elements in the
assembling /elimination process.

In employing the finite-element technique, one obtains a
sparse matrix. The conventional Gauss elimination proce-
dure results in a great waste of core storage. This problem
is avoided by employing the frontal algorithm [17], [18].
The concept of the frontal algorithm is that the Gauss
climinations with respect to the fields of some nodes are
made in the process of matrix assembling as soon as the
assembling for that node is completed. Thus, those rows
pertaining to that node can be deleted. If one would like to
construct the entire field patterns, such matrix elements
can be stored in a secondary storage device for later use in
back-substitution. Thereby, the matrix size is proportional
to the square of the number of nodes on the boundary
rather than proportional to the square of the number of
entire nodes.

With the aim of obtaining the relations between the
fields of the outermost and of the next-to-outermost nodes,
the assembling /elimination process starts from the inner-
most elements and then moves outward gradually, as indi-
cated in Fig. 1. After the last element is treated, a matrix
equation with a size of 2M X4M (for convenience, the
nodes on C, is made normal to C; and the number of
nodes on C, is made equal to M, as depicted in Fig. 1) in
the fields of the outermost and the next-to-outermost
nodes emerges, from which the explicit relations for the
inhomogeneous region can be deduced and the propa-
gation characteristics can be obtained (see Section II).

It is noted that for a given region and elements, the
effective bandwidth in the present elimination process is
larger than that in the method employing the artificial zero
boundary or infinite elements. However, the actual region
to be manipulated by the finite-element in the combined
method is much smaller than those in the other two
methods, especially in treating the propagation constants
close to cutoff or in handling coupled waveguides.
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V. REsuLts

In this investigation, we use triangular ‘elements and
expand all the associated fields in linear basis functions. In
treating isolated waveguides, no symmetry property was
used. In treating two identical coupled waveguides, sym-
metry about the plane bisecting the two waveguides was
utilized such that the inhomogeneous region to be
manipulated by the finite-element is the same as in the
case of the corresponding isolated waveguide.

To examine the accuracy of the proposed method, we
compare the results of a rotational symmetric waveguide
with the parabolic profile (a = b in (8)), as shown in Fig.
2. For such a special case, highly accurate methods are
available, such as in [16]. From Fig. 2, it is seen that the
agreement between the results is quite good. At a high
normalized propagation constant B (defined below), the
fields concentrate in the core region, and, accordingly, the
variations of the fields become stronger. This fact accounts
for the accuracy of the calculated results being worse for a
high B value. Similarly, it can be expected that the accu-
racy is worse for higher modes since the field variations of
such modes become larger.

In the following, we consider coupled and uncoupled
elliptical and diffusion waveguides. The results are pre-
sented in normalized frequency V, and normalized propa-
gation constant B, where

Ve= 2kob(€g - ‘2)1/2/77

= [(B/ko)z" ‘2]/(53"‘ €).

The notation of H),, (H},) designates that mode for
which the dominant magnetic field is directed in the y(x)
direction and the dominant field pattern has m and n
peaks in the x and y directions, respectively.

A. Elliptical Waveguide

The elliptical waveguide considered has a parabolic pro-
file, i.e.,

2 2

X K2 2
e(x,y)=eg—(eg—e2) —+ for ?+E-5<1

(3

Dispersion curves of such a waveguide with a /b= 2 and a
permittivity ratio €, (=€, /¢€,) of 2.25 are shown in Fig. 3.
The corresponding scalar solutions (e, —1) are shown in
Fig. 4. Comparing Figs. 3 and 4, it is seen that the curves
of the H; modes deviate more than those of the HJ,,
modes as the permittivity ratio e, is increased. Such a
situation is also found in homogeneous rectangular wave-
guide [14], [19]. Cutoff frequencies of some lower modes
are presented in Table 1. It is seen that there are two
fundamental modes H{; and H7, for such a guiding struc-
ture. Dispersion curves of the corresponding coupled
waveguides (directional coupler) are illustrated in Figs. 5

=¢,, elsewhere.
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Fig. 2. Dispersion curves of a circular wavegmde with the parabolic
profile and with €, /¢, = 2.25. The solid line is taken from [16], which
may be deemed as exact; the dots correspond to the proposed method
with the number of nodes N, =121 and the number of elements
N, =210.
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Fig. 3. Vectorial dispersion curves of the elliptical waveguide. N, =121

and N, = 210.
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Fig. 4. Scalar dispersion curves of the elliptical waveguide.

and 6, where the separation s is the distance between the
two centers of the ellipses minus the length of the major
axes. Similar to homogeneous coupled waveguides [14],
each mode of the corresponding isolated waveguide is split
into two modes. For such split modes, the pattern of H o is
either even (the Hj;,, or the H},,, mode) or odd (the H,,,,
or the H},  mode) with respect to the plane of symmetry.
Comparing Figs. 5 and 6, it is seen that, using normalized
quantities, the magnitudes of splitting do not depend much
on the permittivity ratio. From Figs. 5 and 6, it is evident
that the splitting is stronger for a smaller propagation
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TABLEI
NorMaLIZED CUTOFF FREQUENCIES OF THE ELLIPTICAL
WAVEGUIDE
c coupled waveguides, s=b
- 1 € =2.25 € - 1 €.=2.25
T r even T odd even® odd
Mode
1y, 0.00 0.00 0.00 0.704 0.00 0.766
i 0.00 0.00 0.704 0.00 0.831 0.00
ng 1.403 1.388 1.362 1.477 1.340 1.471
Hy, 1.403 1.524 1.477 1.362 1.596 1.483
Y, 2.044 2.013 2.037 2.192 2.005 2.188
o 2.044 2.129 2.192 2.037 2.286 2.125
uy, 1.997 2.045 1.967 2.028 2.016 2.075
1y, 1.997 2.013 2.028 1.967 2.053 1.971
Fig. 5. Vectorial dispersion curves of two identical, coupled elliptical
waveguides.
10 T ¥
0.8+
06
B L
0.4+
02
0
0
Fig. 6. Scalar dispersion curves of two identical, coupled elliptical

waveguides.

constant B or for lower modes, which indicates that under
such situations the fields penetrate farther away from the
core regions. When the coupled waveguides are operated at
a high propagation constant, no substantial coupling can
be expected.

Cutoff frequencies of coupled waveguides are also pre-
sented in Table I. It is found that the cutoff frequency of
one split mode (from either fundamental mode) shifts from
zero, and the other split mode is never cutoff. Again, the
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Fig. 7. Splitting of the fundamental modes of the elliptical waveguide
as a function of separation s.

Fig. 8. Dispersion curves of the diffusion waveguide with a/b=2,
D/b=1, ¢, /e, =225 and ¢, /¢, =2.15. N, =136 and N, =232.
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Fig. 9. Splitting of the fundamental modes of the diffusion waveguide
with a/b=1, D/b=1, €, /¢ =225, and €, /¢; = 2.15 as a function of
separation s. N, =82 and N, =136.

entire guiding structure possesses two fundamental modes
HY,, and HY, The separation s of coupled waveguides
has a strong effect on the coupling coefficient as shown in
Fig. 7. Note that, for given values of B and ¥V, the explicit
relations (between the fields and their normal derivatives)
for the inhomogeneous regions are identical, regardless of
how far the coupled waveguides are separated. Thereby,
considerable computation effort can be saved if one treats
several couplers with different separations s simulta-
neously, as in constructing Fig. 7.



SU: COMBINED METHOD FOR DIELECTRIC WAVEGUIDE

02t

B
01f
1 Fl 1
1 3 5
*/b.
@
04 T T T T T
" Vo=2
N\ 11e
-H:w\\\‘
e
5 os _%’__
7" Hise
02 1 " 1 2 1
1 3 5
s/b
(®)

Fig. 10. Splitting of the fundamental modes of the diffusion waveguide
with a/b=1, D/b=1, €, /e, =225/2.15, and €, /¢; =1 as a function
of separation s. (a) ¥, =1.35. (b) ¥, = 2.

B.  Diffusion Waveguide

The diffusion waveguides considered have a Gaussian
profile, i.e.,

e(x. ) =&, +(e;=e;)exp [~ (3/D)],
for |x|<a,0>y>—-2b
fory>0

=€l’

(9)

which models the permittivity distribution of a homoge-
-neous substrate (with relative permittivity €, ) processed by
a masked one-dimensional diffusion. Dispersion curves of
the first six modes of such a guiding structure are shown in
Fig. 8. It is seen that the curves of the H?, and the H),
modes come together as in the channel waveguide dis-
cussed in {15], for which the inhomogeneous region is
replaced by a homogeneous one. However, the discrepancy
between such two modes is larger for the diffusion wave-
guide. This phenomenon is due partly to the fact that the
permittivity of the inhomogeneous region is made large at
the substrate surface, where, as a consequence, the fields
become stronger than in the corresponding channel wave-
guide (D — o0). Since the permittivity discontinuity at the
surface is large and the fields are not negligible there, a
larger discrepancy between the H, and the H?,, modes is
expected.

=¢,, elsewhere
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Similar splitting due to mutual coupling also exists in
the coupled diffusion waveguides as shown in Figs. 9 and
10. Comparing Figs. 9 and 10(a), it is seen that, for the
same range of B and the same separation s, the coupling
coefficient (the magnitude of splitting in B) in Fig. 9 is
much weaker than the corresponding coupler with an
increased €, (Fig. 10(a)). This fact is accounted for by
noting that the permittivity of the air (¢;) in Fig. 9 is much
smaller than that of the substrate (¢,). Consequently, the
fields are more confined in the core regions, which in turn
results in a smaller coupling coefficient. From such results,
it seems plausible to enhance the coupling coefficients by
coating the coupled diffusion waveguides with a dielectric
layer of a higher permittivity. However, from Fig, 10(b), it
is noted that, for a given frequency, such an enhancement
will be compensated since the coupler is also driven to a
higher B when ¢, is increased.

VI. CONCLUSIONS

A combined method employing both the finite-element
technique and the surface integral equations method is
proposed, and has been used to analyze propagation char-
acteristics of coupled and uncoupled elliptical and diffu-
sion waveguides. Cutoff frequencies of isolated and cou-
pled elliptical waveguides are also presented. Since this
combined method does not suffer from the appearance of
spurious modes, it is convenient in the analysis of new
guiding structures.
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